1,833
Views
26
CrossRef citations to date
0
Altmetric
Review

The Mammalian Zona Pellucida: A Matrix That Mediates Both Gamete Binding and Immune Recognition?

Pages 349-364 | Received 08 Jul 2009, Accepted 18 Sep 2009, Published online: 21 Jul 2010
 

Abstract

The crucial cell adhesion events required for mammalian fertilization commence when spermatozoa bind to the specialized extracellular matrix of the oocyte, known as the zona pellucida (ZP). Bound gametes then undergo a signal transduction cascade known as acrosomal exocytosis that enables them to penetrate this matrix and fuse with the oocyte to create a new individual. The ZP is therefore the target of intense investigation in the mouse, pig, bovine, and human models. Major goals in such studies are to define the adhesion molecules, signal transduction pathways, and the molecular basis for the species-restricted binding of gametes. Evidence exists indicating that protein-carbohydrate and to a lesser extent protein-protein interactions play a role in the initial gamete binding. More recent findings in an unusual sperm-somatic cell adhesion system indicate that tri- and tetraantennary N-glycans mediate initial sperm-oocyte binding in both the murine and porcine models, but conflicting data exist. A novel paradigm designated the “domain specific model” will be presented that could explain these inconsistencies. Another potential functional role of the ZP is immune recognition. Both spermatozoa and oocytes lack major histocompatibility (MHC) class I molecules that mediate the recognition of self in the immune system. This absence makes gametes less susceptible to class I restricted cytotoxic T lymphocytes, but more vulnerable to natural killer (NK) cells. Therefore a “fail safe” system for NK cell recognition should exist on both types of gametes. Another issue is that oocytes could begin to express paternal major histocompatibility antigens during the blastocyst stage prior to hatching, and thus mechanisms could also be in place to block the development of maternal adaptive immune responses. An enhanced understanding of these issues could facilitate the development of superior infertility treatments and contraceptive strategies, and define central operating principles of immune recognition in the female reproductive system.

ACKNOWLEDGMENTS

Studies cited in this review that were performed by the author were supported by National Institutes of Health Grant HD35652, the Breeden-Adams Foundation, the Elsa U. Pardee Foundation, the Jeffress Trust, and the Mission Enhancement Program in Reproductive Biology and Medicine (C8783) funded by the state of Missouri.

Declaration of Interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.