885
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Cytocompatibility of PLA/Nano-HA composites for interface fixation

, , , , , , , , , & show all
Pages 1122-1126 | Received 16 Dec 2014, Accepted 15 Jan 2015, Published online: 13 Mar 2015
 

Abstract

Objective: When preliminary tests have confirmed a nano-hydroxyapatite (Nano-HA) content of 20% of the polylactic acid (PLA) composite material of Nano-HA interface fixation material for biomechanical requirements, there is a need for further observation of its biocompatibility and clinical applications, to provide reference data. Methods: Preparation of Nano-HA content of 20% PLA composite Nano-HA bone substitute material and extract. The establishment of the negative control group (containing 10% fetal bovine serum in DMEM complete medium), experimental group (extract), the positive control group (mass concentration of 0.64% phenol), and a co-culture of rabbit bone marrow mesenchymal stem cells (rBMSC) and materials extraction liquid. Observation of the morphological changes in rBMSC in culture at time points of 3, 5, and 7 days, the use of the MTT assay, and determination of the relative growth in the above set of rBMSC in cell culture at 3, 5, and 7 days, to judge the material's cytotoxicity. Results: With time, the absorbance value of the three groups of cells were significantly increased (P < 0.01). The relative growth of the rBMSCs in experimental group in the first 3, 5, and 7 days was 95.3%, 96.8% and 97.6%; the cytotoxicity was according to the national standards I; the difference was not significant (P > 0.05) between the the experimental group and the negative control group; there was a significant difference between the positive control group and the other 2 groups (P < 0.05). Cells in the experimental group were seen having normal morphology, and spindle-shaped adherent growth. Conclusion: PLA composite artificial bone materials and Nano-HA show good cell compatibility, and the values for cytotoxicity, with reference to GB/T16886.5.2003 (China) standards, are in the safe range.

Acknowledgment

This study received financial support from Guangdong Science and Technology Project (project number 2013B021800100) Shenzhen Science and Technology Project (project number CXZZ20130321152713220 and JCYJ20140414170821164).

Declaration of interest

The authors report no declarations of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.