26
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Tumor necrosis factor-α inhibits chondrogenic differentiation of synovial fibroblasts through p38 mitogen activating protein kinase pathways

, , , , , , & show all
Pages 366-378 | Received 19 Feb 2008, Accepted 10 Mar 2008, Published online: 02 Jan 2014
 

Abstract

We previously reported that synovial fibroblast-like cells (SFs) can be differentiated into chondrocytes through activin receptor-like kinase (ALK) 3 activation. The aim of this study was to clarify the effect and signaling pathways of tumor necrosis factor (TNF)-α on the chondrogenic differentiation of SFs. Primary SFs from patients with rheumatoid arthritis (RA) were treated with recombinant human bone morphogenetic protein-2 or transduced with a constitutively active mutant of the ALK3 gene (ALK3CA) with or without TNF-α, and then cultured in pellets. Expression of chondrocyte-specific genes was analyzed by real-time polymerase chain reaction or by histological analysis. Inhibitors of mitogen-activating protein kinase (MAPK) pathways or adenovirus vectors carrying a dominant-negative mutant of the IκB kinase 2 gene (AxIKK2DN) were used to analyze the signaling pathways of TNF-α. Expression of chondrocyte-specific genes was induced in SFs either by rhBMP-2 treatment or by ALK3CA transduction, which was strongly suppressed by TNF-α treatment. TNF-α markedly increased the p38 MAPK pathways in SFs, and inhibition of p38 MAPK activation partially restored the inhibitory effect of TNF-α on the chondrogenic differentiation of SFs. Combination therapy BMP-2 and anti-TNF-α agents especially targeting p38 MAPK might be a good approach to stimulating neochondrogenesis in the damaged joints in RA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.