28
Views
24
CrossRef citations to date
0
Altmetric
Review Article

New complexities in helper T cell fate determination and the implications for autoimmune diseases

, , &
Pages 533-541 | Received 22 Feb 2008, Accepted 01 Jun 2008, Published online: 02 Jan 2014
 

Abstract

Recently, new complexities in cell fate decision for helper T cells have emerged. One new lineage, which has come to be called Th17 cells, selectively produces proinflammatory cytokines including interleukin-17 (IL-17, A and F), IL-21, and IL-22. In conjunction with transforming growth factor β-1 (TGFβ-1), IL-6, IL-21, and IL-23, which activate the transcription factor, signal transducer, and activator of transcription 3 (Stat3), the expression of another transcription factor, retinoic acid-related orphan receptor-γt (RORγt) leads to the differentiation of Th17 cells in mice. Other cytokines including IL-2, IL-4, interferon-γ (IFN-γ), and IL-27 inhibit Th17 differentiation. However, IL-2 acting with TGFβ-1 induces differentiation of naïve CD4+ T cells to become regulatory T cells (Tregs). Th17 cells are now known to play an important role not only in the pathogenesis of inflammation and autoimmune diseases, but also host defense against extracellular bacteria. Conversely, extensive data substantiate the role of Tregs as essential in maintenance of peripheral tolerance. Selectively targeting Tregs and Th17 cells are likely to be important strategies in the treatment of inflammatory and autoimmune diseases in humans.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.