1,188
Views
6
CrossRef citations to date
0
Altmetric
Technical Paper

Laboratory Evaluation of an Aldehyde Scrubber System Specifically for the Detection of Acrolein

, , , , , , , , & show all
Pages 1370-1378 | Published online: 24 Jan 2012
 

Abstract

We demonstrate the use of an aldehyde scrubber system to resolve isobaric aldehyde/alkene interferences in a proton transfer reaction mass spectrometer (PTR-MS) by selectively removing the aldehydes from the gas mixture without loss of quantitative information for the alkene components. The aldehyde scrubber system uses a bisulfite solution, which scrubs carbonyl compounds from the gas stream by forming water-soluble carbonyl bisulfite addition products, and has been evaluated using a synthetic mixture of acrolein and isoprene. Trapping efficiencies of acrolein exceeded 97%, whereas the transmission efficiency of isoprene was better than 92%. Quantification of the PTR-MS response to acrolein was validated through an intercomparison study that included two derivatization methods, dinitrophenylhydrazine (DNPH) and O-(4-cyano-2-ethoxybenzyl)hydroxylamine (CNET), and a spectroscopic method using a quantum cascade laser infrared absorption spectroscopy (QCL) instrument. Finally, using cigarette smoke as a complex matrix, the acrolein content was assessed using the scrubber and compared with direct QCL-based detection.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.