1,268
Views
5
CrossRef citations to date
0
Altmetric
Technical Paper

Derivation of New Emission Factors for Quantification of Mass Emissions When Using Optical Gas Imaging for Detecting Leaks

, , &
Pages 1061-1070 | Published online: 24 Feb 2012
 

Abstract

This paper describes the development of new “leak/no-leak” emission factors that are suitable for estimating facilities’ fugitive emissions when using an alternative work practice (AWP) that is based on optical gas imaging technology for detecting leaking piping system components. These emission factors were derived for valves, pumps, and connectors/flanges for instrument leak detection thresholds ranging from 3 to 60 g/hr using a combination of field data and Monte Carlo statistical simulation techniques. These newly derived leak/no-leak emission factors are designed to replace the U.S. Environment Protection Agency (EPA) 1995 Protocol factors, which were based on Method 21 monitoring of leaks at “uncontrolled” facilities. The emission factors published in the 1995 Protocol have not been updated since the 1970s. This derivation is based on results where the authors document the use of a Monte Carlo simulation technique to quantify the required leak detection thresholds that provide equal—or better—environmental benefits for an AWP. The use of these newly derived emission factors is demonstrated for different methods of computing fugitive emissions from a hypothetical model refinery. The resulting facility emissions calculated by using these new emission factors is compared with the existing emission estimation methods provided in the EPA 1995 Protocol. The results demonstrate that the new emission factors provide an emission estimate that is the closest to that obtained from the direct determination of total emissions by Monte Carlo simulations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.