687
Views
20
CrossRef citations to date
0
Altmetric
Technical Paper

Synopsis of the Temporal Variation of Particulate Matter Composition and Size

&
Pages 216-233 | Published online: 28 Feb 2012
 

Abstract

A synopsis of the detailed temporal variation of the size and number distribution of particulate matter (PM) and its chemical composition on the basis of measurements performed by several regional research consortia funded by the U.S. Environmental Protection Agency (EPA) PM Supersite Program is presented. This program deployed and evaluated a variety of research and emerging commercial measurement technologies to investigate the physical and chemical properties of atmospheric aerosols at a level of detail never before achieved. Most notably these studies demonstrated that systematic size-segregated measurements of mass, number, and associated chemical composition of the fine (PM2.5) and ultrafine (PM0.1) fraction of ambient aerosol with a time resolution down to minutes and less is achievable. A wealth of new information on the temporal variation of aerosol has been added to the existing knowledge pool that can be mined to resolve outstanding research and policy-related questions. This paper explores the nature of temporal variations (on time scales from several minutes to hours) in the chemical and physical properties of PM and its implications in the identification of PM formation processes, and source attribution (primary versus secondary), the contribution of local versus transported PM and the development of effective PM control strategies. The PM Supersite results summarized indicate that location, time of day, and season significantly influence not only the mass and chemical composition but also the size-resolved chemical/elemental composition of PM. Ambient measurements also show that ultrafine particles have different compositions and make up only a small portion of the PM mass concentration compared with inhalable coarse and fine particles, but their number concentration is significantly larger than their coarse or fine counterparts. PM size classes show differences in the relative amounts of nitrates, sulfates, crustal materials, and most especially carbon as well as variations in seasonal and diurnal patterns.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.