89
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Muscle Activation Is Different When the Same Muscle Acts as an Agonist or an Antagonist During Voluntary Movement

, , &
Pages 135-145 | Published online: 07 Aug 2010
 

Abstract

During movement, the intrinsic muscle force-velocity property decreases the net force for the shortening muscle (agonist) and increases it for the lengthening muscle (antagonist). The authors present a quantitative analysis of the effect of that muscle property on activation and force output of the same muscle acting as agonist and antagonist in fast and medium speed goaloriented movements. They compared biceps activation and force output when that muscle was the agonist in a series of elbow flexions and when it was the antagonist in a series of elbow extensions. They performed the same analysis for the lateral, long, and medial heads of the triceps muscle. Muscle EMG was about 2 times larger and the angular impulse developed by the modeled contractile torque was up to 3 times larger when the muscle or muscles acted as the agonist than when the same muscle or muscles acted as the antagonist in movements with similar kinematics. The large effect of the muscle force-velocity property strongly suggests that the neural controller must account for intrinsic muscle properties to generate movements with a commonly observed bell-shaped velocity profile.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.