7,511
Views
98
CrossRef citations to date
0
Altmetric
Review Articles

Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease

, &
Article: 33029 | Received 31 Jul 2016, Accepted 21 Oct 2016, Published online: 22 Nov 2016
 

Abstract

Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies, including atherosclerosis and Alzheimer’s disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses, specifically T cells and B cells in periodontitis and related conditions. In periodontitis, this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces the inflammatory responses related to T- and B-cell activation, and subsequent IFN-γ secretion by a subset of T cells. The T cells further suppress upregulation of programmed cell death-1 (PD-1)-receptor on CD+cells and its ligand PD-L1 on CD11b+-subset of T cells. IL-2 downregulates genes regulated by immune response and induces a cytokine pattern in which the Th17 lineage is favored, thereby modulating the Th17/T-regulatory cell (Treg) imbalance. The suppression of IFN-γ-stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes triggers distinct T cell responses and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis, P. gingivalis reduces Tregs, transforms growth factor beta-1 (TGFβ-1), and causes imbalance in the Th17 lineage of the Treg population. In AD, P. gingivalis may affect the blood–brain barrier permeability and inhibit local IFN-γ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in AD neuropathology implies P. gingivalis infection of the brain likely causing impaired clearance of insoluble amyloid and inducing immunosuppression. By the effective manipulation of the armory of adaptive immune suppression through a plethora of virulence factors, P. gingivalis may act as a keystone organism in periodontitis and in related systemic diseases and other remote body inflammatory pathologies.

Acknowledgements

Ingar Olsen acknowledges funding through the European Commission (FP7-HEALTH-306029 ‘TRIGGER’). Daniel J Smith is acknowledged for his help with the manuscript. Sim K. Singhrao acknowledges the continued financial support for her research by the University of Central Lancashire.