943
Views
0
CrossRef citations to date
0
Altmetric
Thematic cluster: Parameterization of lakes in numerical weather prediction and climate models

Impact of satellite-based lake surface observations on the initial state of HIRLAM. Part I: evaluation of remotely-sensed lake surface water temperature observations

, , &
Article: 21534 | Received 24 May 2013, Accepted 23 Apr 2014, Published online: 20 May 2014
 

Abstract

Lake Surface Water Temperature (LSWT) observations are used to improve the lake surface state in the High Resolution Limited Area Model (HIRLAM), a three-dimensional numerical weather prediction (NWP) model. In this paper, satellite-derived LSWT observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Along-Track Scanning Radiometer (AATSR) are evaluated against in-situ measurements collected by the Finnish Environment Institute (SYKE) for a selection of large- to medium-size lakes during the open-water season. Data assimilation of these LSWT observations into the HIRLAM is in the paper Part II. Results show a good agreement between MODIS and in-situ measurements from 22 Finnish lakes, with a mean bias of −1.13°C determined over five open-water seasons (2007–2011). Evaluation of MODIS during an overlapping period (2007–2009) with the AATSR-L2 product currently distributed by the European Space Agency (ESA) shows a mean (cold) bias error of −0.93°C for MODIS and a warm mean bias of 1.08°C for AATSR-L2. Two additional LSWT retrieval algorithms were applied to produce more accurate AATSR products. The algorithms use ESA's AATSR-L1B brightness temperature product to generate new L2 products: one based on Key et al. (Citation1997) and the other on Prata (Citation2002) with a finer resolution water mask than used in the creation of the AATSR-L2 product distributed by ESA. The accuracies of LSWT retrievals are improved with the Key and Prata algorithms with biases of 0.78°C and −0.11°C, respectively, compared to the original AATSR-L2 product (3.18°C).

6. Acknowledgements

This research was supported by European Space Agency (ESA-ESRIN) Contract No. 4000101296/10/I-LG (Support to Science Element, North Hydrology Project) and a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to C. Duguay, as well as a NSERC postgraduate scholarship to H. Kheyrollah Pour. We thank the reviewers for valuable comments and suggestions that helped improve the original manuscript.