107
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

VAGO Method for the solution of elliptic second‐order boundary value problems

&
Pages 533-545 | Received 23 Jul 2010, Published online: 10 Feb 2011
 

Abstract

Mathematical physics problems are often formulated using differential operators of vector analysis, i.e. invariant operators of first order, namely, divergence, gradient and rotor (curl) operators. In approximation of such problems it is natural to employ similar operator formulations for grid problems. The VAGO (Vector Analysis Grid Operators) method is based on such a methodology. In this paper the vector analysis difference operators are constructed using the Delaunay triangulation and the Voronoi diagrams. Further the VAGO method is used to solve approximately boundary value problems for the general elliptic equation of second order. In the convection‐diffusion‐reaction equation the diffusion coefficient is a symmetric tensor of second order.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.