34
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Modelling the Photovoltaic Output Power using the Differential Polynomial Network and Evolutionary Fuzzy Rules

, , &
Pages 78-94 | Received 01 Dec 2016, Published online: 11 Jan 2017
 

Abstract

The unstable production of renewable energy sources, which is difficult to model using conventional computational techniques, may be predicted to advantage by means of biologically inspired soft-computing methods. The photovoltaic output power is primarily dependent on the solar direct or global radiation, which short-term numerical forecasts are possible to apply for daily power predictions. The study compares two methods, which can successfully model dynamic fluctuant variances of the solar irradiance and corresponding output power time-series. Differential polynomial network is a new neural network class, which defines and substitutes for the general partial differential equation to model an unknown system function. Its total output is composed from selected neurons, i.e. relative polynomial substitution terms, formed in all network layers of a multi-layer structure. The proposed derivative polynomial regression using relative dimensionless fraction units, formed according to the Similarity analysis, can describe and generalize data relations on a wider range of values than defined by the training interval when using standard soft-computing composing techniques that apply only absolute data. 1-variable time-series observations are possible to model by time derivatives of a converted ordinary differential equation, solved analogously with partial derivative substitution terms of several time-point variables.

AMS Subject Classification:

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.