284
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Development and evaluation of a real-time quantitative PCR assay for Aspergillus flavus

&
Pages 683-690 | Accepted 06 Jun 2008, Published online: 20 Jan 2017
 

Abstract

Aspergillus flavus is a ubiquitous mold and the most common mold contaminating foodstuffs. Many strains of A. flavus produce aflatoxins. In addition it is an allergen and an opportunistic pathogen of animals and plants. A. flavus often is underestimated in traditional culture analyses due to the expertise required and the cost associated with speciating members of the genus Aspergillus. The goal of this study was to develop and validate a primer and probe set for the rapid detection and quantitation of A. flavus in pure culture using real-time quantitative polymerase chain reaction (QPCR) amplification. Unique DNA regions were located in the genome of the target organism by sequence comparison with the GenBank database, and several candidate oligonucleotides were identified from the scientific literature for potential use with the TaqMan® QPCR technology. Three primer and probe sets were designed and validated for specificity and sensitivity in laboratory experiments. Initial screening to test for sensitivity was performed with seven A. flavus isolates and selected nontarget fungi. Specificity testing was conducted with the selected primer and probe set, which amplified all nine A. flavus isolates tested, including an aflatoxin producing strain. The primers did not amplify DNA extracted from 39 other fungal species (comprising 16 genera), including 18 other Aspergillus species and six Penicillium species. No amplification of human or bacterial DNA was observed; however cross-reactivity was observed with Aspergillus oryzae. PCR analysis of DNA dilutions and the use of an internal positive control demonstrated that 67% of the fungal DNA samples assayed contained PCR inhibitors. The assay validated for the target organism is capable of producing PCR results in less than 1 h after DNA extraction. The results of this research demonstrate the capabilities of QPCR for the enhanced detection and enumeration of fungi of significance to human health.

The authors thank Joanne L. Henry for her valuable technical assistance. The research described in this article was financed in part by an Applied Research Initiative Award, University of Nevada at Las Vegas.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.