415
Views
92
CrossRef citations to date
0
Altmetric
Original Articles

Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie

, &
Pages 813-821 | Received 24 Aug 2009, Accepted 13 Jan 2010, Published online: 20 Jan 2017
 

Abstract

Dark septate endophytes (DSE) are common and abundant root-colonizing fungi in the native tallgrass prairie. To characterize DSE fungi were isolated from roots of mixed tallgrass prairie plant communities. Isolates were grouped according to morphology, and the grouping was refined by ITS-RFLP and/or sequencing of the ITS region. Sporulating species of Periconia, Fusarium, Microdochium and Aspergillus were isolated along with many sterile fungi. Leek resynthesis was used to quickly screen for DSE fungi among the isolates. Periconia macrospinosa and Microdochium sp. formed typical DSE structures in the roots; Periconia produced melanized intracellular microsclerotia in host root cortex, whereas Microdochium produced abundant melanized inter- and intracellular chlamydospores. To further validate the results of the leek resynthesis growth responses of leek and a dominant prairie grass, Andropogon gerardii, were assessed in a laboratory resynthesis system. Leek growth mainly was unresponsive to the inoculation with Periconia or Microdochium, whereas Andropogon tended to respond positively. Select Periconia and Microdochium isolates were tested further for their enzymatic capabilities and for ability to use organic and inorganic nitrogen sources. These fungi tested positive for amylase, cellulase, polyphenol oxidases and gelatinase. Periconia isolates used both organic and inorganic nitrogen sources. Our study identified distinct endophytes in a tallgrass prairie ecosystem and indicated that these endophytes can use a variety of complex nutrient sources, suggesting facultative biotrophic and saprotrophic habits.

This material is based on work supported by the National Science Foundation under Grants No. 0344838 and 0221489 (to AJ). Konza Prairie Biological Research Station (KPBS) maintained the field sites and was supported by NSF Long-Term Ecological Research (LTER) program. Richard Wynia of the Manhattan Plants Material Center provided the Andropogon gerardii seeds. David George at Kansas State Veterinary Diagnostic Laboratory sequenced the fungal PCR-amplicons.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.