248
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Multigene sequence data reveal morphologically cryptic phylogenetic species within the genus Laccaria in southern Australia

, , &
Pages 547-563 | Received 19 Jul 2012, Accepted 08 Nov 2012, Published online: 20 Jan 2017
 

Abstract

Laccaria (Hydnangiaceae, Agaricales, Basidiomycota) is one of the more intensively studied ectomycorrhizal genera; however, species boundaries within Laccaria and the closely related Hydnangium and Podohydnangium in Australia have not yet been examined with molecular sequence data. Based on morphological characters, eight native species of Laccaria are currently recognized in Australia, as well as three Hydnangium species and the monotypic Podohydnangium australe. Sequences of the internal transcribed spacer region of nuclear rDNA (ITS), RNA polymerase beta subunit II (rpb2) and translation elongation factor 1 alpha (tef-1α) were generated from 77 collections of Laccaria, Hydnangium and Podohydnangium from Australia. Ten phylogenetic species and a further 11 potential species (represented by singletons) of Laccaria in Australia are delimited from sequence analyses. Most of the morphological species contained cryptic phylogenetic species, but these species were always nested entirely within a given morphological species, although not always as sister taxa. The rpb2 locus performed best as a species barcode with pairwise and patristic distance measures. The ITS sequence region returned the least resolved gene tree of the three regions examined and was the least useful as a barcode region. Based on the phylogenetic topology, there appears to have been multiple gains and/or losses of the ectomycorrhizal association of some species with the myrtle beech, Nothofagus cunninghamii as well as of sequestrate basidiocarps and two-spored basidia.

Acknowledgments

Thanks to the following members of the Royal Botanic Gardens, Melbourne: Franck Stefani for helpful discussions; Teresa Lebel for collections and fieldwork assistance; Nimal Karunajeewa for curation support; and Katie Syme (Denmark, Western Australia) for collections. Thanks also to two anonymous reviewers for suggesting improvements to the manuscript.

Support for this research was through the Jim Ross PhD Scholarship from the Cybec Foundation with additional support from the Holsworth Wildlife Research Endowment, both to EMS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.