671
Views
14
CrossRef citations to date
0
Altmetric
Article

The use of near-infrared reflectance spectroscopy (NIRS) in the prediction of chemical composition and in vitro neutral detergent fiber (NDF) digestibility of Italian alfalfa hay

, , , , &
Pages 271-273 | Published online: 07 Mar 2016
 

Abstract

The objective of the present work was to develop calibration equations for the prediction of chemical composition and forage digestibility from different populations of alfalfa hay harvested in Parmigiano-Reggiano cheese production area of Northern Italy. Due to annual climatic variations that affect soil and growing conditions and consequently cause high variability in chemical and physical composition, 319 hay samples from four years were used to build robust calibration. NIRS calibration equations were developed for the prediction of in vitro NDF digestibility (IVNDFd) and 20 chemical parameters (dry matter, starch, fat, sugar, fiber fractions, crude protein, nitrogen fractions and some minerals) of Italian hay. The results obtained show that NIRS equations greatly explain the variation in the composition existing in alfalfa hays grown in Northern Italy, except for a few parameters characterized by low variability range value. The equations obtained for the prediction of biological and chemical parameters explain the major part of the variation existing in the reference data, which open great prospects for the use of NIRS in planning feeding strategies of livestock, based on alfalfa forage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.