818
Views
0
CrossRef citations to date
0
Altmetric
Review

Inhibition of Lactate Dehydrogenase Activity as an Approach to Cancer Therapy

, , &
Pages 429-445 | Published online: 17 Mar 2014
 

Abstract

In the attempt of developing innovative anticancer treatments, growing interest has recently focused on the peculiar metabolic properties of cancer cells. In this context, LDH, which converts pyruvate to lactate at the end of glycolysis, is emerging as one of the most interesting molecular targets for the development of new inhibitors. In fact, because LDH activity is not needed for pyruvate metabolism through the TCA cycle, inhibitors of this enzyme should spare glucose metabolism of normal non-proliferating cells, which usually completely degrade the glucose molecule to CO2. This review is aimed at summarizing the available data on LDH biology in normal and neoplastic cells, which support the anticancer therapeutic approach based on LDH inhibition. These data encouraged pharmaceutical industries and academic institutions in the search of small-molecule inhibitors and promising candidates have recently been identified. The availability of inhibitors with drug-like properties will allow the evaluation in the near future of the real potential of LDH inhibition in anticancer treatment, also making the identification of the most responsive neoplastic conditions possible.

Acknowledgements

The authors are grateful to R Buonfiglio and M Masetti from the FaBiT Department, University of Bologna, for preparing the figures showing the structures of LDH tetramer and monomer .

Financial & competing interests disclosure

The work of authors is supported by funding from the University of Bologna, Roberto and Cornelia Pallotti legacy for cancer research, Fondazione del Monte di Bologna e Ravenna. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Additional information

Funding

The work of authors is supported by funding from the University of Bologna, Roberto and Cornelia Pallotti legacy for cancer research, Fondazione del Monte di Bologna e Ravenna. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.