372
Views
6
CrossRef citations to date
0
Altmetric
Journal Club

Integrin αIIbβ3

A novel effector of Gα13

&
Pages 4-5 | Received 06 Aug 2010, Accepted 06 Sep 2010, Published online: 01 Jan 2011
 

Abstract

Under physiological conditions, circulating platelets are discoid in shape. On these platelets, the fibrinogen receptor (integrin αIIbβ3) is in a low-affinity state, unable to bind soluble fibrinogen (Fg). Activation by agonists such as ADP and thrombin leads to a change in the conformation of the integrin αIIbβ3 through a process known as inside-out signaling. This enables the integrin to bind soluble Fg, which initiates a cascade of events referred to as outside-in signaling. Outside-in signaling control processes such as platelet spreading and clot retraction by regulating small G-proteins such as RhoA, Rac and cdc42.

Figures and Tables

Figure 1 Schematic representation of the dynamic regulation of RhoA by Gα13 during platelet activation. (A) Activation of platelets by thrombin receptors coupled to Gα13 leads to the activation of RhoA, leading to platelet shape change. (B) The change in the conformation of integrin to a high-affinity form results in fibrinogen binding to αIIbβ3. Active Gα13 binds to the cytoplasmic domain of β3 leading to the activation of c-Src, resulting in platelet spreading. The rise in intracellular calcium activates calpain, which cleaves the β3 cytoplasmic domain, releasing c-Src, which, resulting in the activation of RhoA, leads to cell retraction. *Denotes GTP-bound active form of G-proteins.

Figure 1 Schematic representation of the dynamic regulation of RhoA by Gα13 during platelet activation. (A) Activation of platelets by thrombin receptors coupled to Gα13 leads to the activation of RhoA, leading to platelet shape change. (B) The change in the conformation of integrin to a high-affinity form results in fibrinogen binding to αIIbβ3. Active Gα13 binds to the cytoplasmic domain of β3 leading to the activation of c-Src, resulting in platelet spreading. The rise in intracellular calcium activates calpain, which cleaves the β3 cytoplasmic domain, releasing c-Src, which, resulting in the activation of RhoA, leads to cell retraction. *Denotes GTP-bound active form of G-proteins.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.