1,386
Views
115
CrossRef citations to date
0
Altmetric
Research Paper

Overexpression of EZH2 contributes to acquired cisplatin resistance in ovarian cancer cells in vitro and in vivo

Pages 788-795 | Published online: 15 Oct 2010
 

Abstract

Enhancer of Zeste Homologue 2 (EZH2), a specific histone 3 lysine 27 (H3K27) methyltransferase, plays a critical role in tumorigenesis and cancer progression through epigenetic gene silencing and chromatin remodeling. However, the role of EZH2 in chemotherapy resistance is unknown. In this study, we found that EZH2 was overexpressed in cisplatin-resistant ovarian cancer cells compared with cisplatin-sensitive cells. Knockdown of EZH2 by RNA interference (RNAi) resensitized drug-resistant ovarian cancer A2780/DDP cells to cisplatin and decreased the level of H3K27 trimethylation (H3K27me3). Moreover, EZH2 downregulation suppressed cell proliferation and caused G2/M cell cycle arrest in A2780/DDP cells. Loss of EZH2 also enhanced sensibility of tumor xenografts to cisplatin and inhibited tumor growth in vivo. Our results indicate that EZH2 is essential for chemotherapy resistance in cisplatin-resistant cancer cells in vitro and in vivo, which is probably through H3K27 methylation as well as regulation of cell proliferation. EZH2 could be a potential novel epigenetic target to overcome drug resistance.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.