951
Views
18
CrossRef citations to date
0
Altmetric
Research Paper

Inhibition of metadherin sensitizes breast cancer cells to AZD6244

, , &
Pages 43-49 | Received 11 Jun 2011, Accepted 28 Nov 2011, Published online: 01 Jan 2012
 

Abstract

The development of systemic therapy drug resistance for breast cancer treatment is an ongoing problem, thus, so are the potential molecular mechanisms of it. AZD6244 is a novel ATP-uncompetitive inhibitor to MAP/ERK kinase (MEK) 1/2 which has been demonstrated to be potent, selective and safe in the clinical trials and previous studies. However, the precise role of resistance to AZD6244 is largely unknown. We and other groups have reported that the novel oncogene Metadherin (MTDH) is associated with multiple drug resistance, but there is no report about its role in treatment of AZD6244. Here we report that the resistance to AZD6244 can be reserved by downregulating MTDH in breast cancer cell lines. When the MTDH was downregulated, the breast cancer cells exhibited a significantly increased sensitivity to AZD6244 as measured by MTT assay. After treated with AZD6244 the MTDH-knockdown cells showed more apoptosis rate and growth inhibition. We also showed that knockdown of MTDH cannot only increase expression of FOXO3a but also activate it by promoting its translocation via MTDH/ERK1/2/FOXO3a pathway rather than MTDH/AKT/FOXO3a pathway. In conclusion knockdown MTDH can enhance the breast cancer cells sensitivity to AZD6244 via regulating the expression and activity of FOXO3a. These indicate us that MTDH is a candidate marker to predict the clinical efficacy of AZD6244 and targeting MTDH could overcome the resistance to AZD6244 in breast cancer cells.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This project is supported by Program for New Century Excellent Talents in University, Key Project of Chinese Ministry of Education (No. 108080), National Natural Science Foundation of China (No. 30772133; No.81072150; No.81172529) and Independent Innovation Foundation of Shandong University (IIFSDU, No. 2009JQ007) to Y.Q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.