1,061
Views
25
CrossRef citations to date
0
Altmetric
Research Paper

Apoptotic Response to 5-Fluorouracil Treatment Is Mediated by Reduced Polyamines, Non-Autocrine Fas Ligand and Induced Tumor Necrosis Factor Receptor 2

Pages 572-578 | Published online: 04 May 2003
 

Abstract

5-fluorouracil (5-FU) is the major chemotherapeutic agent for treatment of colorectal carcinoma, but the molecular mechanisms of response and resistance are not understood completely. We therefore studied the 5-FU dose response and time course of gene expression transcriptome changes in colon carcinoma cell lines that are relatively sensitive or resistant to 5-FU (RKO and HT29, respectively) in order to identify cellular pathways and corroborate functions of selected pathways. Expression of genes for polyamine biosynthesis, i.e. ornithine decarboxylase (ODC) and spermine and spermidine synthases, was repressed in the sensitive line, while the biosynthesis-inhibiting gene ODC antizyme was induced in the resistant line, and the rate-limiting gene in catabolism, spermine/spermidine acetyltransferase, was induced in both lines. Polyamine levels showed corresponding drastic decreases after 5-FU treatment, and polyamine replenishment interfered with 5-FU-induced apoptosis. In the sensitive cells which have wild-type p53, the p53 gene and its downstream genes including p21/WAF1, mdm2, Fas, mic-1, EphA2, and ferredoxin reductase as well as genes in the tumor necrosis factor (TNF) pathway including TNF receptor 2 (TNFR2) were induced, but not Fas ligand (FasL). Exposure to exogenous FasL increased 5-FU-induced apoptosis, and anti-TNFR2 antibody but not anti-TNFR1 partially protected the sensitive cells. Our combination of gene expression profiling and corroborative functional studies revealed that reduced polyamine levels, non-autocrine FasL originating exogenous to tumor cells, and induced TNFR2 are all functional mediators of apoptosis caused by 5-FU in colon carcinoma cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.