1,083
Views
25
CrossRef citations to date
0
Altmetric
Research Paper

Bif-1 suppresses breast cancer cell migration by promoting EGFR endocytic degradation

, , , &
Pages 956-966 | Received 09 May 2012, Accepted 31 May 2012, Published online: 01 Aug 2012
 

Abstract

Dysregulation of EGFR expression and signaling is well documented to contribute to disease progression and metastasis in many types of cancer including breast cancer. EGF-stimulated EGFR activation leads to receptor internalization and endocytic degradation to control EGFR-mediated signaling. This process is frequently deregulated in cancer cells, leading to increased EGFR expression and mitogenic signaling. Here, we demonstrate that Bif-1, a tumor suppressor, plays a role in EGFR endocytic degradation and chemotactic migration in MDA-MB-231 breast cancer cells. Our data reveal that suppression of Bif-1 expression delays EGFR degradation and sustains Erk1/2 activation in response to EGF stimulation. Mechanistically, loss of Bif-1 sequesters internalized EGF in Rab5-positive endosomes and delays EGFR trafficking to lysosomes. Recruitment of Rab7 to EGF-positive vesicles and the activation of Rab7 are impaired in Bif-1 knockdown cells. Additionally, intracellular pH and the localization of acidic vesicles are altered by suppression of Bif-1. Furthermore, inhibition of Bif-1 increases chemotactic cell migration in response to EGF or serum, which correlates with prolonged cytoskeletal reorganization. Importantly, the effect of Bif-1 on EGF-induced cell migration is abolished by gefitinib, an EGFR-specific inhibitor. Taken together, these data suggest a novel function for Bif-1 as a suppressor of breast cancer cell migration by promoting EGFR degradation through the regulation of endosome maturation.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We acknowledge Dr. Xingcong Ren for assistance with Guava flow cytometry and Dr. Chengyu Liang for the GST-RILP-RBD plasmid. This work is supported by the grants from the National Institute of Health (CA82197 and CA129682) to H.G.W.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.