939
Views
31
CrossRef citations to date
0
Altmetric
Research Paper

The impact of PTEN tumor suppressor gene on acquiring resistance to tamoxifen treatment in breast cancer patients

, , , , , , , , , & show all
Pages 1165-1174 | Received 25 Mar 2012, Accepted 03 Jul 2012, Published online: 15 Aug 2012
 

Abstract

Tamoxifen is a standard therapeutical treatment in patients with estrogen receptor positive breast carcinoma. However, less than 50% of estrogen receptor positive breast cancers do not respond to tamoxifen treatment whereas 40% of tumors that initially respond to treatment develop resistance over time. The underlying mechanisms for tamoxifen resistance are probably multifactorial but remain largely unknown. The primary aim of this study was to investigate the impact of PTEN tumor suppressor gene on acquiring resistance to tamoxifen by analyzing loss of heterozygosity (LOH) and immunohystochemical expression of PTEN in 49 primary breast carcinomas of patients treated with tamoxifen as the only adjuvant therapy. The effect of PTEN inactivation on breast cancer progression and disease outcome was also analyzed. Reduced or completely lost PTEN expression was observed in 55.1% of samples, while 63.3% of samples displayed LOH of PTEN gene. Inactivation of PTEN immunoexpression significantly correlated with the PTEN loss of heterozygosity, suggesting LOH as the most important genetic mechanism for the reduction or complete loss of PTEN expression in primary breast carcinoma. Most importantly, LOH of PTEN and consequential reduction of its immunoexpression showed significant correlation with the recurrence of the disease. Besides, our study revealed that LOH of PTEN tumor suppressor was significantly associated with shorter disease free survival, breast cancer specific survival and overall survival. In summary, our results imply that LOH of PTEN could be used as a good prognostic characteristic for the outcome of breast cancer patients treated with tamoxifen.

Acknowledgments

This research was supported by the Ministry of Education and Science of Republic of Serbia, grant number. III41031 and grant number ON173049. The authors are grateful to Dr Boban Stanojevic of the Laboratory for Radiobiology and Molecular Genetics, Institute of Nuclear Sciences “Vinča,” Belgrade, Serbia for the experimental contribution at the very beginning of the realization of this project.

Disclosure of Potential Conflicts of Interest

The authors declare no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.