906
Views
11
CrossRef citations to date
0
Altmetric
Research Paper

Histone deacetylase inhibitors restore toxic BH3 domain protein expression in anoikis-resistant mammary and brain cancer stem cells, thereby enhancing the response to anti-ERBB1/ERBB2 therapy

, , , , , , , & show all
Pages 982-996 | Received 19 Aug 2013, Accepted 20 Aug 2013, Published online: 22 Aug 2013
 

Abstract

The present studies focused on defining the mechanisms by which anoikis-resistant (AR) mammary carcinoma cells can be reverted to a therapy-sensitive phenotype. AR mammary carcinoma cells had reduced expression of the toxic BH3 domain proteins BAX, BAK, NOXA, and PUMA. In AR cells expression of the protective BCL-2 family proteins BCL-XL and MCL-1 was increased. AR cells were resistant to cell killing by multiple anti-tumor cell therapies, including ERBB1/2 inhibitor + MCL-1 inhibitor treatment, and had a reduced autophagic flux response to these therapies, despite similarly exhibiting increased levels of LC3II processing. Knockdown of MCL-1 and BCL-XL caused necro-apoptosis in AR cells to a greater extent than in parental cells. Pre-treatment of anoikis-resistant cells with histone deacetylase inhibitors (HDACIs) for 24 h increased the levels of toxic BH3 domain proteins, reduced MCL-1 levels, and restored/re-sensitized the cell death response of AR tumor cells to multiple toxic therapies. In vivo, pre-treatment of AR breast tumors in the brain with valproate restored the chemo-sensitivity of the tumors and prolonged animal survival. These data argue that one mechanism to enhance the anti-tumor effect of chemotherapy could be HDACI pre-treatment.

10.4161/cbt.26234

Disclosure of Potential Conflicts of Interest

No potential conflict of interest was disclosed.

Acknowledgments

Studies in this manuscript were funded by Department of Defense Breast Cancer Idea award W81XWH-10-1-0009, National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases (DK52825), and National Cancer Institute (CA141703 and CA150218).