1,514
Views
17
CrossRef citations to date
0
Altmetric
Research Paper

Zscan4 interacts directly with human Rap1 in cancer cells regardless of telomerase status

&
Pages 1094-1105 | Received 29 Apr 2014, Accepted 13 May 2014, Published online: 19 May 2014
 

Abstract

Telomeres are repetitive sequences at the ends of chromosomes protected by DNA binding proteins of the shelterin complex that form capping structures. Through the interaction of shelterin complex-associated proteins, telomere length maintenance is regulated. Recently, the newly identified embryonic stem cell marker, Zinc finger and SCAN domain-containing 4 gene (Zscan4), was shown to be a telomere-associated protein, co-localizing to the shelterin complex. Furthermore, it was shown to play an essential role in genomic stability by regulating telomere elongation. Although it is known that Zscan4 regulates TRF2, POT1b, and Rap1 expression in embryonic stem cells, the relationship and the exact mechanism of action for ZSscan4-mediated telomere maintenance in cancer cells is unknown. In this study, we investigated Zscan4 expression and interactions with Rap1 in telomerase positive (HeLa, MCF7) and ALT pathway (SaOS2, U2OS) cancer cells. Through western, pulldown, siRNA, and overexpression assays we demonstrate, for the first time, that Zscan4 directly associates with Rap1 (physical association protein). Furthermore, by generating truncated versions of Zscan4, we identified its zinc finger domain as the Rap1 binding site. Using bimolecular fluorescence complementation, we further validate this functional interaction in human cancer cells. Our results indicate that Zscan4 functions as a mediator of telomere length through its direct interaction with Rap1, possibly regulating shelterin complex-controlled telomere elongation in both telomerase positive and alternative lengthening of telomere pathways. This direct interaction between Zscan4 and Rap1 may explain how Zscan4 rapidly increases telomere length, yielding important information about the role of these proteins in telomere biology.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors would like to thank TTU Department of Biological Sciences for their support, TTU Association of Biologist for their Grants-in-Aid, the TTU Imaging Center for access the fluorescence microscopes, Dr Boyd Butler for help and access to the Spinning Disk LSCM as well as training to generate the BiFC images for analysis. We would also like to thank the Biology and Biotechnology Core Facilities for access to specialized, high-end instrumentation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.