1,049
Views
130
CrossRef citations to date
0
Altmetric
Research Paper

Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors

Pages 1367-1373 | Published online: 18 Oct 2005
 

Abstract

Reactive oxygen species (ROS) signal cascades involved in cell growth, cell death, mitogenesis, angiogenesis and carcinogenesis. ROS are produced as a byproduct of oxidative phosphorylation (OXPHOS) in the mitochondria. It is estimated that 2–4% of the oxygen consumed during OXPHOS is converted to ROS. Besides mitochondria, NADPH-oxidase 1 (Nox1) also generates a significant amount of ROS in the cell. In this paper, we tested the hypothesis that mitochondria control Nox 1 redox signaling and the loss of control of this signaling contributes to tumorigenesis. We analyzed Nox1 expression in a mitochondrial gene knockout (?0) cell line and in the isogenic cybrid cell line in which mitochondrial genes were restored by transfer of wild type mitochondria into ?0 cells. Our study revealed, for the first time, that the inactivation of mitochondrial genes leads to down-regulation of Nox1 and that the transfer of wild type mitochondrial genes restores the Nox1 expression to a level comparable to that in the parental cell line. Consistent with Nox1 down-regulation, we found that ?0 cells contained low levels of superoxide anion and that superoxide levels reversed to parental levels in cybrid cells when Nox1 expression was restored by transfer of wild type mitochondria. Increasing mitochondrial superoxide levels also increased the expression of Nox1 in parental cells. Confocal microscopy studies revealed that Nox1 localizes in the mitochondria. Nox1 was highly expressed in breast (86%) and ovarian (71%) tumors and that its expression positively correlated with expression of cytochrome C oxidase encoded by mtDNA. Our study, described in this paper demonstrates the existence of cross talk between the mitochondria and NADPH oxidase. Furthermore, our studies suggest that mitochondria control Nox1 redox signaling and the loss of control of this signaling contributes to breast and ovarian tumorigenesis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.