612
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Intestinal metaplasia with a high salt diet induces epithelial proliferation and alters cell composition in the gastric mucosa of mice

Pages 669-675 | Published online: 05 Apr 2005
 

Abstract

Intestinal metaplasia of the gastric mucosa is an important component in the pathway to adenocarcinoma. The mechanisms that induce the progression from intestinal metaplasia to cancer have not been elucidated. High dietary salt has been known as one of the risk factors for gastric cancer development in humans. Therefore, we investigated the role of high salt diet on gastric epithelial cell proliferation and differentiation, using our mouse model that ectopically expressed Cdx2 homeodomain transcription factor and induced an intestinal metaplastic phenotype in the gastric epithelia. Sixty Cdx2-transgenic and sixty age-matched wild-type littermates were studied. Fifty-percent Cdx2-transgenic and wild type mice were administered a high-salt diet and the other fifty-percent was fed a standard diet starting at 12 weeks after birth. At 10, 20, and 40 weeks after initiation of the diets, histopathological changes were determined by H&E, alcian blue, and periodic acid-Schiff (PAS) staining. Cell types and cell kinetics were assessed by immunohistochemistry. At 52 weeks, significant alterations in pathology were observed in the Cdx2-transgenic mice fed a high-salt diet, including elongation of gastric pits, reduction of the glandular zone in the gastric corpus, and deepening of glands in the antrum. In the Cdx2 transgenic mice fed a high salt diet, the parietal and chief cells were significantly decreased in the gastric corpus. A significant increase in cell proliferation and apoptosis in the corpus and antrum were observed in Cdx2-transgenic mice fed a high-salt diet as compared to wild-type littermates. Taken together, these data implicate that intestinal metaplasia in concert with a high-salt diet induces epithelial proliferation, apoptosis, and alters cellular types in the gastric mucosa of mice. Alteration in the composition of the gastric epithelium may play a role in influencing the microenvironment to engender susceptibility to carcinogens.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.