299
Views
31
CrossRef citations to date
0
Altmetric
Research Paper

Small interfering RNA-induced CHFR silencing sensitizes oral squamous cell cancer cells to microtubule inhibitors

Pages 773-780 | Published online: 25 May 2005
 

Abstract

Alterations in the function of cell cycle checkpoints are frequently detected in oral squamous cell carcinomas (OSCCs), and are often associated with the sensitivity of the cancer cells to chemotherapeutic drugs. Recently, a mitotic checkpoint gene, Chfr, was shown to be inactivated by promoter methylation and point mutations in various human tumors. Here we show that the absence of its product, CHFR, is associated with mitotic checkpoint dysfunction, and that cancer cells lacking CHFR are sensitive to microtubule inhibitors. Checkpoint impairment appears to be caused by a prophase defect in this case, as OSCC cells lacking CHFR showed phosphorylation of histone H3 on Ser10 and translocation of cyclin B1 to the nucleus. When CHFR-deficient OSCC cells were treated with a microtubule inhibitor (docetaxel or paclitaxel), significant numbers of apoptotic cells were observed. Moreover, disruption of CHFR using small interfering RNA (siRNA) impaired the mitotic checkpoint, thereby reducing the ability of OSCC cells to arrest at G2/M phase and making them more sensitive to microtubule inhibitors. Our results suggest that CHFR could be a useful molecular target for chemotherapy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.