293
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Effect of a novel inhibitory mAb antibody against β-subunit of F1F0 ATPase on HCC

Pages 1829-1835 | Published online: 01 Nov 2008
 

Abstract

Hepatocellular carcinoma (HCC) represents a worldwide health problem. F1F0 ATPase, one of the most unique supermolecule enzymes in the inner mitochondrial membrane, was recently found located also on the plasma membrane of some tumor and epithelial cells. Ecto-F1F0 ATPase might play the major role in maintaining the normal average intracellular pH in those cells relative to tumor acidic extracellular microenviroment. Inhibiting the extracellular F1F0 ATPase on tumor exhibits both antiangiogenic and antitumorigenic activities. We found previously a strain of murine mAb, mAb6F2C4, which binds with β-catalytic subunit of F1F0 ATPase. Immunofluorescence and flow cytometry assay showed that mAb6F2C4 could bind with plasma membrane of diverse hepatoma cells and HUVEC. Moreover, it could markedly block extracellular ATP generation of SMMC-7721 cells under extracellular acidic condition. In vitro, mAb6F2C4 retarded not only the proliferation and colony forming ability of SMMC-7721 cells, but also the proliferation and tube formation ability of HUVEC. mAb6F2C4 was located on plasma membrane of some hepatoma cells and attenuated dramaticly tumor growth in tumor xenograft models in nude mice. Therefore, we concluded that mAb6F2C4 binding with ecto-β-subunit of F1F0 ATPase, could inhibit extracellular ATP synthesis and exhibit both antiangiogenic and antitumorigenic activities, which could be further developed for HCC therapy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.