918
Views
274
CrossRef citations to date
0
Altmetric
Research Paper

miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer

Pages 255-264 | Published online: 04 Feb 2008
 

Abstract

Tumor growth results in hypoxia. Understanding the mechanisms of gene expression reprogramming under hypoxia may provide important clues to cancer pathogenesis. We studied miRNA genes that are regulated by hypoxia in ovarian cancer cell lines by TaqMan miRNA assay containing 157 mature miRNAs. MiR-210 was the most prominent miRNA consistently stimulated under hypoxic conditions. We provide evidence for the involvement of the HIF signaling pathway in miR-210 regulation. Biocomputational analysis and in vitro assays demonstrated that e2f transcription factor 3 (e2f3), a key protein in cell cycle, is regulated by miR-210. E2F3 was further confirmed to be downregulated at the protein level upon induction of miR-210. Importantly, we found remarkably high frequency of miR-210 gene copy deletions in ovarian cancer patients (64%, n=114) and that gene copy number correlates with miR-210 expression levels. Taken together, our results indicate that miR-210 plays a crucial role in tumor onset as a key regulator of the hypoxia response and provide evidence for a link between hypoxia and the regulation of cell cycle.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.