361
Views
14
CrossRef citations to date
0
Altmetric
Research Paper

Modulation of KCa channels increases anticancer drug delivery to brain tumors and prolongs survival in xenograft model

Pages 1924-1933 | Published online: 15 Oct 2009
 

Abstract

Most anticancer drugs fail to impact patient survival since they fail to cross the blood-brain tumor barrier (BTB) at therapeutic levels. For example, Temozolomide (TMZ) exhibits some anti-tumor activity against brain tumors, so does Trastuzumab (Herceptin, Her-2 inhibitor), which might be effective against Her2 neu overexpressing gliomas. Nevertheless, intact BTB and active efflux system may prevent their entry to brain tumors. Previously we have shown that potassium channel agonists increased carboplatin and Her-2 neu antibody delivery in animal glioma models. Here, we studied whether potassium channel agonist increase TMZ and Herceptin delivery across the BTB to elicit anti-tumor activity and increase survival in nude mice with human glial tumor. The KCa channel activity and expression was also evaluated in human glioma tissues. We administered NS-1619, calcium-dependent potassium (KCa) channel agonist, with [14C]-TMZ, and quantified TMZ delivery. The results clearly demonstrate that when given systemically both TMZ and Herceptin do not cross the BTB in significant amounts, however, NS-1619 co-infusion with [14C]-TMZ and Herceptin resulted in enhanced drug delivery to brain-tumor cells. The combination treatment of TMZ and Herceptin also showed improved anti-tumor effect which was more prominent than that of either treatment alone in increasing the survival in mice with brain tumor, when co-infused with KCa channel agonists. In conclusion, KCa channel agonists may benefit brain tumor patients by increasing anti-neoplastic agent’s delivery to brain tumors. A clinical outcome of this research is the discovery of a novel drug delivery system that circumvents the BBB/BTB to benefit brain tumor patients.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.