621
Views
20
CrossRef citations to date
0
Altmetric
Review

Understanding the molecular basis of common fragile sites instability: Role of the proteins involved in the recovery of stalled replication forks

Pages 4039-4046 | Received 06 Oct 2011, Accepted 13 Oct 2011, Published online: 01 Dec 2011
 

Abstract

Common fragile sites (CFS) are difficult-to-replicate genomic regions that show a high propensity to breakage following certain forms of DNA replication stress. Long considered a fascinating component of human chromosome structure, their relevance for biology is proven by the fact that they are frequently rearranged in cancer cells. Furthermore, CFS were found to be the preferential targets for genome instability in the early stages of human tumorigenesis. In recent years, much progress has been made in understanding the structural features of CFS and the mechanisms that monitor and regulate their integrity. From these studies it has emerged that the reason for their fragility may depend on the abnormal high-frequency of fork stalling events occurring at CFS during DNA replication. Consistently, the ATR-dependent checkpoint together with several proteins involved in response to replication fork stalling have been implicated in maintaining CFS stability. Furthermore, more recent findings propose that the scarcity of replication initiation events within CFS may contribute to their expression upon replication perturbation. This review will focus on the molecular determinants responsible for genomic instability at CFS and the systems used by cells to address this eventuality.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.