1,496
Views
123
CrossRef citations to date
0
Altmetric
Report

Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment

, , , , , , , , , , & show all
Pages 3837-3850 | Received 17 Aug 2012, Accepted 30 Aug 2012, Published online: 14 Sep 2012
 

Abstract

Impaired DNA damage response pathways may create vulnerabilities of cancer cells that can be exploited therapeutically. One such selective vulnerability is the sensitivity of BRCA1- or BRCA2-defective tumors (hence defective in DNA repair by homologous recombination, HR) to inhibitors of the poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme critical for repair pathways alternative to HR. While promising, treatment with PARP-1 inhibitors (PARP-1i) faces some hurdles, including (1) acquired resistance, (2) search for other sensitizing, non-BRCA1/2 cancer defects and (3) lack of biomarkers to predict response to PARP-1i. Here we addressed these issues using PARP-1i on 20 human cell lines from carcinomas of the breast, prostate, colon, pancreas and ovary. Aberrations of the Mre11-Rad50-Nbs1 (MRN) complex sensitized cancer cells to PARP-1i, while p53 status was less predictive, even in response to PARP-1i combinations with camptothecin or ionizing radiation. Furthermore, monitoring PARsylation and Rad51 foci formation as surrogate markers for PARP activity and HR, respectively, supported their candidacy for biomarkers of PARP-1i responses. As to resistance mechanisms, we confirmed the role of the multidrug resistance efflux transporters and its reversibility. More importantly, we demonstrated that shRNA lentivirus-mediated depletion of 53BP1 in human BRCA1-mutant breast cancer cells increased their resistance to PARP-1i. Given the preferential loss of 53BP1 in BRCA-defective and triple-negative breast carcinomas, our findings warrant assessment of 53BP1 among candidate predictive biomarkers of response to PARPi. Overall, this study helps characterize genetic and functional determinants of cellular responses to PARP-1i and contributes to the search for biomarkers to exploit PARP inhibitors in cancer therapy.

View correction statement:
Correction to Oplustilova L, et al. Cell Cycle Volume 11, Issue 20; pp. 3837–50
This article is referred to by:
Addicted to PAR?
Predicting PARP inhibitor sensitivity and resistance

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.