394
Views
33
CrossRef citations to date
0
Altmetric
Report

Evaluation of the potential therapeutic role of a new generation of vitamin D analog, MART-10, in human pancreatic cancer cells in vitro and in vivo

, , , , , , , , , , & show all
Pages 1316-1325 | Received 14 Feb 2013, Accepted 25 Mar 2013, Published online: 02 Apr 2013
 

Abstract

Pancreatic cancer is a lethal disease with no known effective chemotherapy and radiotherapy, and most patients are diagnosed in the late stage, making them unsuitable for surgery. Therefore, new therapeutic strategies are urgently needed. 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] is known to possess antitumor actions in many cancer cells in vitro and in vivo models. However, its clinical use is hampered by hypercalcemia. In this study, we investigated the effectiveness and safety of a new generation, less calcemic analog of 1α,25(OH)2D3, 19-nor-2α-(3-hydroxypropyl)-1α,25-dihydroxyvitamin D3 (MART-10), in BxPC-3 human pancreatic carcinoma cells in vitro and in vivo. We demonstrate that MART-10 is at least 100-fold more potent than 1α,25(OH)2D3 in inhibiting BxPC-3 cell proliferation in a time- and dose-dependent manner, accompanied by a greater upregulation of cyclin-dependent kinase inhibitors p21 and p27 and a greater downregulation of cyclin D3 and cyclin-dependent kinases 4 and 5, leading to a greater increase in the fraction of cells in G0/G1 phase. No induction of apoptosis and no effect on Cdc25 phosphatases A and C were observed in the presence of either MART-10 or 1α,25(OH)2D3. In a xenograft mouse model, treatment with 0.3 µg/kg body weight of MART-10 twice/week for 3 weeks caused a greater suppression of BxPC-3 tumor growth than the same dose of 1α,25(OH)2D3 without inducing hypercalcemia and weight loss. In conclusion, MART-10 is a promising agent against pancreatic cancer growth. Further clinical trial is warranted.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.