739
Views
28
CrossRef citations to date
0
Altmetric
Extra Views

Ran GTPase promotes oocyte polarization by regulating ERM (Ezrin/Radixin/Moesin) inactivation

&
Pages 1672-1678 | Received 25 Apr 2013, Accepted 02 May 2013, Published online: 08 May 2013
 

Abstract

Asymmetric meiotic divisions in mammalian oocytes are driven by the eccentric positioning of the spindle, along with a dramatic reorganization of the overlying cortex, including a loss of microvilli and formation of a thick actin cap. Actin polarization relies on a Ran-GTP gradient centered on metaphase chromosomes; however, the downstream signaling cascade is not completely understood. In a recent study, we have shown that Ran promotes actin cap formation via the polarized activation of Cdc42. The related GTPase Rac is also activated in a polarized fashion in the oocyte cortex and co-localizes with active Cdc42. In other cells, microvilli collapse can be triggered by inactivation of the ERM (Ezrin/Radixin/Moesin) family of actin-membrane crosslinkers under the control of Rac. Accordingly, we show here that Ran-GTP promotes a substantial loss of phosphorylated ERMs in the cortex overlying the spindle in mouse oocytes. However, this polarized phospho-ERM exclusion zone was unaffected by Rac or Cdc42 inhibition. Therefore, we suggest that Ran activates two distinct pathways to regulate actin cap formation and microvilli disassembly in the polarized cortex of mouse oocytes. The possibility of a crosstalk between Rho GTPase and ERM signaling and a role for ERM inactivation in promoting cortical actin dynamics are also discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.