899
Views
58
CrossRef citations to date
0
Altmetric
Report

KDM5B histone demethylase controls epithelial-mesenchymal transition of cancer cells by regulating the expression of the microRNA-200 family

, , , , , & show all
Pages 2100-2112 | Received 04 Apr 2013, Accepted 22 May 2013, Published online: 06 Jun 2013
 

Abstract

Histone methylation is implicated in various biological and pathological processes including cancer development. In this study, we discovered that ectopic expression of KDM5B, a histone H3 lysine 4 (H3K4) demethylase, promoted epithelial-mesenchymal transition (EMT) of cancer cells. KDM5B increased the expression of transcription factors, ZEB1 and ZEB2, followed by downregulation of E-cadherin and upregulation of mesenchymal marker genes. The expression of the microRNA-200 (miR-200) family, which specifically targets ZEB1 and ZEB2, was reduced in the cells with KDM5B overexpression. We found that KDM5B repressed the expression of the miR-200 family by changing histone H3 methylation status of their regulatory regions. The introduction of miR-200 precursor in the cells inhibited EMT induction by KDM5B, suggesting that miR-200 family was a critical downstream mediator of KDM5B-promoted EMT. Furthermore, knockdown of KDM5B was shown to affect the expression of EMT-related genes, indicating the involvement of endogenous KDM5B. Our study demonstrated a novel role of KDM5B histone lysine demethylase in EMT, which may contribute to malignant progression of cancer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.