491
Views
11
CrossRef citations to date
0
Altmetric
Extra Views

Co-regulation of senescence-associated genes by oncogenic homeobox proteins and polycomb repressive complexes

, , &
Pages 2194-2199 | Received 10 May 2013, Accepted 08 Jun 2013, Published online: 20 Jun 2013
 

Abstract

Cellular senescence is a stable cell cycle arrest that can be induced by stresses such as telomere shortening, oncogene activation or DNA damage. Senescence is a potent anticancer barrier that needs to be circumvented during tumorigenesis. The cell cycle regulator p16INK4a is a key effector upregulated during senescence. Polycomb repressive complexes (PRCs) play a crucial role in silencing the INK4/ARF locus, which encodes for p16INK4a, but the mechanisms by which PRCs are recruited to this locus as well as to other targets remain poorly understood. Recently we discovered the ability of the homeobox proteins HLX1 (H2.0-like homeobox 1) and HOXA9 (Homeobox A9) to bypass senescence. We showed that HLX1 and HOXA9 recruit PRCs to repress INK4a, which constitutes a key mechanism explaining their effects on senescence. Here we provide evidence for the regulation of additional senescence-associated PRC target genes by HLX1 and HOXA9. As both HLX1 and HOXA9 are oncogenes implicated in leukemogenesis, we discuss the implications that the collaboration between Homeobox proteins and PRCs has for senescence and cancer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.