745
Views
32
CrossRef citations to date
0
Altmetric
Extra Views

BAF chromatin remodeling complex: Cortical size regulation and beyond

, &
Pages 2953-2959 | Received 16 Jul 2013, Accepted 01 Aug 2013, Published online: 13 Aug 2013
 

Abstract

The multi-subunit chromatin remodeling BAF complex controls different developmental processes. Using cortex-specific conditional knockout and overexpression mouse models, we have recently reported that BAF170, a subunit of the vertebrate BAF chromatin remodeling complex, interacts with transcription factor (TF) Pax6 to control cortical size and volume. The mechanistic basis includes suppression of the expression of Pax6 target genes, which are required for genesis of cortical intermediate progenitors (IPs) and specification of late neuronal subtype identity. In addition, we showed that a dynamic competition between BAF170 and BAF155 subunits within the BAF complex during progression of neurogenesis is a primary event in modulating the size of the mammalian cortex. Here, we present additional insights into the interaction between the BAF complex and TF Pax6 in the genesis of IPs of the developing cortex. Furthermore, we show that such competition between BAF170 and BAF155 is involved as well in the determination of the size of the embryonic body. Our results add new insights into a cell-intrinsic mechanism, mediated by the chromatin remodeling BAF complex that controls vertebrate body shape and size.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.