769
Views
18
CrossRef citations to date
0
Altmetric
Report

Integrin-β5 and zyxin mediate formation of ventral stress fibers in response to transforming growth factor β

, , , , &
Pages 3377-3389 | Received 20 Aug 2013, Accepted 05 Sep 2013, Published online: 13 Sep 2013
 

Abstract

Cell adhesion to the extracellular matrix is an essential element of various biological processes. TGF-β cytokines regulate the matrix components and cell–matrix adhesions. The present study investigates the molecular organization of TGF-β-induced matrix adhesions. The study demonstrates that in various mouse and human epithelial cells TGF-β induces cellular structures containing 2 matrix adhesions bridged by a stretch of actin fibers. These structures are similar to ventral stress fibers (VSFs). Suppression of integrin-β5 by RNA interference reduces VSFs in majority of cells (>75%), while overexpression of integrin-β5 fragments revealed a critical role of a distinct sequence in the cytoplasmic domain of integrin-β5 in the VSF structures. In addition, the integrity of actin fibers and Src kinase activity contribute to integrin-β5-mediated signaling and VSF formation. TGF-β-Smad signaling upregulates actin-regulatory proteins, such as caldesmon, zyxin, and zyxin-binding protein Csrp1 in mouse and human epithelial cells. Suppression of zyxin markedly inhibits formation of VSFs in response to TGF-β and integrin-β5. Zyxin is localized at actin fibers and matrix adhesions of VSFs and might bridge integrin-β5-mediated adhesions to actin fibers. These findings provide a platform for defining the molecular mechanism regulating the organization and activities of VSFs in response to TGF-β.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.