238
Views
26
CrossRef citations to date
0
Altmetric
Report

Persistence Length of Chromatin Determines Origin Spacing in Xenopus Early-Embryo DNA Replication: Quantitative Comparisons between Theory and Experiment

Pages 211-217 | Published online: 03 Dec 2003
 

Abstract

In Xenopus early embryos, replication origins neither require specific DNA sequences nor is there an efficient S/M checkpoint, even though the whole genome (3 billion bases) is completely duplicated within 10-20 minutes. This leads to the “random-completion problem” of DNA replication in embryos, where one needs to find a mechanism that ensures complete, faithful, timely reproduction of the genome without any sequence dependence of replication origins. We analyze recent DNA replication data in Xenopus laevis egg extracts and find discrepancies with models where replication origins are distributed independently of chromatin structure. Motivated by these discrepancies, we have investigated the role that chromatin looping may play in DNA replication. We find that the loop-size distribution predicted from a wormlike-chain model of chromatin can account for the spatial distribution of replication origins in this system quantitatively. Together with earlier findings of increasing frequency of origin firings, our results can explain the random-completion problem. The agreement between experimental data (molecular combing) and theoretical predictions suggests that the intrinsic stiffness of chromatin loops plays a fundamental biological role in DNA replication in early-embryo Xenopus in regulating the origin spacing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.