599
Views
56
CrossRef citations to date
0
Altmetric
Extra Views

Nucleophosmin, HDM2 and p53: Players in UV Damage Incited Nucleolar Stress Response

Pages 974-977 | Published online: 21 May 2004
 

Abstract

p53 tumor suppressor protein acts as a critical monitor preventing survival of cells with irreparable genetic damage. Its levels are tightly controlled by its negative regulator HDM2, and are allowed to rise only during cellular stress. In our recent paper (Kurki, et al. Cancer Cell 2004; 5:465-75) we identify a novel mechanism leading to p53 stabilization following UV damage of the cells. This involves UV damage provoked nucleoplasmic relocalization of a nucleolar protein, nucleophosmin (NPM, B23) and its rapid and transient interactions with both p53 and HDM2. We discuss here implications of recent findings that several p53 pathway proteins interact with NPM and find that its participation in cellular damage responses is limited to transcriptional stress but absent in direct ds DNA breaks. These findings suggest divergence in the routes provoking p53 stability and implicate the nucleolus as a central site participating in transcriptional stress responses.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.