850
Views
71
CrossRef citations to date
0
Altmetric
Extra Views

Artemis links ATM to Double Strand Break Rejoining

Pages 359-362 | Published online: 01 Feb 2005
 

Abstract

Ataxia telangiectasia mutated protein (ATM) is a damage response kinase that initiates a signal transduction response to the presence of DNA double strand breaks (DSBs) regulating cell cycle checkpoint arrest and apoptosis. Indirect evidence has argued that A-T cells also harbour a repair defect since unrepaired DSBs can be observed in non-replicating A-T cells after ionising radiation (IR). The basis underlying such a repair defect has remained unexplained, however. Artemis, a nuclease, whose activity is modified by phosphorylation in vitro, was recently identified as a novel ATM substrate. Artemis and ATM function in a common pathway required for the processing of a subset of double stranded DNA ends induced by IR prior to rejoining by non-homologous end-joining (NHEJ). This subset of DSBs are those normally rejoined with slow kinetics. Additional components of the ATM signal transduction pathway, Nbs1, Mre11, H2AX and 53BP1, are also required for this component of DSB repair. This process substantially contributes to survival post irradiation. Our findings add a new dimension to the ATM signal transduction response demonstrating ATM-dependent regulation of an end-processing mechanism that functions during the cell cycle delay effected by ATM.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.