2,582
Views
134
CrossRef citations to date
0
Altmetric
Perspectives

Poly(ADP-ribose) Polymerase (PARP-1) in Homologous Recombination and as a Target for Cancer Therapy

Pages 1176-1178 | Published online: 15 Jul 2005
 

Abstract

Poly(ADP-ribose) polymerase (PARP-1) binds to DNA breaks to facilitate DNA repair. However, the role of PARP-1 in DNA repair appears to not be critical since PARP-1 knockout mice are viable, fertile and do not develop early onset tumours. Cells isolated from these mice show an increased level of homologous recombination. There is an intricate link between homologous recombination and PARP-1 and a possible role for PARP-1 in DNA double-strand break repair. Although PARP-1 appears not to be required for homologous recombination itself, it regulates the process through its involvement in the repair of DNA single-strand breaks (SSBs). SSBs persisting into the S phase of the cell cycle collapse replication forks, triggering homologous recombination for replication restart. We discuss the recent discoveries on the use of PARP-1 inhibitors as a targeted cancer therapy for recombination deficient cancers, such as BRCA2 tumours.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.