1,283
Views
65
CrossRef citations to date
0
Altmetric
Perspectives

The Function and Regulation of the JARID1 Family of Histone H3 Lysine 4 Demethylases: the Myc Connection

Pages 1324-1328 | Published online: 07 Jun 2007
 

Abstract

Epigenetic regulation of transcription refers to reversible, heritable changes in gene expression that occur in the absence of changes in DNA sequence. A major epigenetic mechanism involves the covalent modification of nucleosomal histones to create binding sites for transcriptional regulators and chromatin remodeling complexes that mediate activation or repression of transcription. While it has been known for a number of years that many histone modifications are reversible, it has only recently been shown that methyl groups are enzymatically removed from lysine residues. Here we discuss the recent characterization of a new class of demethylase enzyme, the JARID1 family, that catalyzes the removal of methyl groups from lysine 4 of histone H3. We summarize recent findings regarding the function of this family of proteins, focusing on our characterization of Little imaginal discs (Lid), the sole JARID1 family protein in Drosophila, which is rate-limiting for Myc-induced cell growth. Finally, we propose models to explain the role of Lid in Myc-mediated growth and discuss the relevance of these findings to human disease and tumor formation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.