486
Views
55
CrossRef citations to date
0
Altmetric
Report

Endomitotic Megakaryocytes that Form a Bipolar Spindle Exhibit Cleavage Furrow Ingression Followed by Furrow Regression

Pages 455-460 | Published online: 26 Feb 2007
 

Abstract

Megakaryocyte (MK) differentiation is marked by the development of progressive polyploidy, due to repeated incomplete cell cycles in which mitosis is aborted during anaphase, a process termed endomitosis. We have postulated that anaphase in endomitotic MKs diverges from diploid mitosis at a point distal to the assembly of the midzone, possibly involving impaired cleavage furrow progression. To define the extent of furrow initiation and ingression in endomitosis, we performed time-lapse imaging of MKs expressing yellow fluorescent protein (YFP)-tubulin and monitored shape change as they progressed through anaphase. We found that in early endomitotic cells that have a bipolar spindle, cleavage furrows form that can undergo significant ingression, but furrows regress to produce polyploid cells. Compared to cells that divide, cells that exhibit furrow regression have a slower rate of furrow ingression and do not furrow as deeply. More highly polyploid MKs undergoing additional endomitotic cycles also show measurable furrowing that is followed by regression, but the magnitude of the shape change is less than seen in the early MKs. This suggests that in the earliest endomitotic cycles when there is formation of a bipolar spindle, the failure of cytokinesis occurs late, following assembly and initial constriction of the actin/myosin ring, whereas in endomitotic MKs that are already polyploid there is secondary inhibition of furrow progression. This behavior of furrow ingression followed by regression may explain why midbody remnants are occasionally observed in polyploid MKs. This finding has important implications for the potential mechanisms for cytokinesis failure in endomitosis.