713
Views
31
CrossRef citations to date
0
Altmetric
Report

Cyclin A-CDK activity during G1 phase impairs MCM chromatin loading and inhibits DNA synthesis in mammalian cells

Pages 2179-2188 | Published online: 10 Jul 2008
 

Abstract

Progression through the mammalian cell division cycle is regulated by the sequential activation of cyclin-dependent kinases, CDKs, at specific phases of the cell cycle. Cyclin A-CDK2 and cyclin A-CDK1 phosphorylate nuclear substrates during S and G2 phases, respectfully. However, the DNA helicase complex, MCM2-7, is loaded onto the origin of replications in G1, prior to the normally scheduled induction of cyclin A. It has previously been shown that cyclin A-CDKs phosphorylate MCM2 and MCM4 in vitro, thereby diminishing helicase activity. Thus, in this study we hypothesize that, in vivo, cyclin A-CDK activity during G1 would result in an inhibition of progression into the S phase. To test this, we establish an in vivo method of inducing cyclin A-CDK activity in G1 phase and observe that activation of cyclin A-CDK, but not cyclin E-CDK complexes, inhibit DNA synthesis without affecting other G1 events such as cyclin D synthesis, E2F activation and cdc6 loading onto chromatin. We further report that the mechanism of this S phase inhibition occurs, at least in part, through impaired loading of MCM onto chromatin, presumably due to decreased levels of cdt1 and premature phosphorylation of MCM by cyclin A-CDK. In addition to providing in vivo confirmation of in vitro predictions regarding cyclin A-CDK phosphorylation of the MCM complex, our results provide insight into the cellular effects of unscheduled cyclin A-CDK activity in mammalian cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.