917
Views
73
CrossRef citations to date
0
Altmetric
Pages 2257-2267 | Published online: 09 Jul 2008
 

Abstract

Fatty Acid Synthase (FASN), a cytoplasmic biosynthetic enzyme, is the major source of long-chain fatty acids, particularly palmitate. Caveolin-1 (Cav-1) is a palmitoylated lipid raft protein that plays a key role in signal transduction and cholesterol transport. Both proteins have been implicated in prostate cancer (PCa) progression, and Cav-1 regulates FASN expression in a mouse model of aggressive PCa. We demonstrate that FASN and Cav-1 are coordinately up-regulated in human prostate tumors in a hormone-insensitive manner. Levels of FASN and Cav-1 protein expression discriminated between localized and metastatic cancers, and the two proteins exhibited analogous subcellular locations in a tumor subset. Endogenous FASN and Cav-1 were reciprocally co-immunoprecipitated from human and murine PCa cells, indicating that FASN forms a complex with Cav-1. FASN, a cytoplasmic enzyme, was induced to associate transiently with lipid raft membranes following alterations in signal transduction within the Src, Akt and EGFR pathways, suggesting that co-localization of FASN and Cav-1 is dependent on activation of upstream signaling mediators. A Cav-1 palmitoylation mutant, Cav-1C133/143/156S, that prevents phosphorylation by Src, did not interact with FASN. When overexpressed in Cav-1-negative PCa cells, Cav-1C133/143/156S caused a reduction of both Src and Akt levels, as well as of their active, phosphorylated forms, in comparison with wild type Cav-1. These findings suggest that FASN and Cav-1 physically and functionally interact in PCa cells. They also imply that palmitoylation within this complex is involved in tumor growth and survival.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.