474
Views
15
CrossRef citations to date
0
Altmetric
Report

The C-termini of tubulin and the specific geometry of tubulin substrates influence the depolymerization activity of MCAK

Pages 2727-2737 | Published online: 01 Sep 2008
 

Abstract

MCAK is a Kinesin-13 that depolymerizes microtubules (MTs) and regulates MT dynamics. We used subtilisin-treated MTs (MTs lacking the C-termini of α- and β-tubulin) and alternative tubulin substrates to study which structural and geometrical features of the MT are critical for MCAK activity. We found that removal of the C-termini significantly decreased the efficiency of MCAK-induced depolymerization, which was not due to a reduction of end-specific binding. We also found that depolymerization of SMTs led to an increase in the stabilization of curved oligomeric tubulin products. Using alternative tubulin substrates with different geometries, we found that MCAK depolymerized parallel and anti-parallel tubulin sheets. However, MCAK did not depolymerize tubulin rings regardless of the presence or absence of the tubulin C-termini. We propose that localization of MCAK to the ends of MTs is independent of tubulin C-termini, that MCAK stabilizes a curved conformation at the end of the MT, and that efficient release of this complex is dependent on the presence of the C-termini of tubulin.αβ

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.