298
Views
9
CrossRef citations to date
0
Altmetric
Report

Phosphoinositide 3-kinase signaling overrides a G2 phase arrest checkpoint and promotes aberrant cell cycling and death of hematopoietic cells after DNA damage

Pages 2877-2885 | Published online: 15 Sep 2008
 

Abstract

DNA damage activates arrest checkpoints to halt cell cycle progression in G1 and G2 phases. These checkpoints can be overridden in hematopoietic cells by cytokines, such as erythropoietin, through the activation of a phosphoinositide 3-kinase (PI3K) signaling pathway. Here, we show that PI3K activity specifically overrides delayed mechanisms effecting permanent G1 and G2 phase arrests, but does not affect transient checkpoints arresting cells up to 10 hours after gamma-irradiation. Assessing the status of cell cycle regulators in hematopoietic cells arrested after gamma-irradiation, we show that Cdk2 activity is completely inhibited in both G1 and G2 arrested cells. Despite the absence of Cdk2 activity, cells arrested in G2 phase did retain detectable levels of Cdk1 activity in the absence of PI3K signaling. However, reactivation of PI3K promoted robust increases in both Cdk1 and Cdk2 activity in G2-arrested cells. Reactivation of Cdks was accompanied by a resumption of cell cycling, but with strikingly different effectiveness in G1 and G2 phase arrested cells. Specifically, G1-arrested cells resumed normal cell cycle progression with little loss in viability when PI3K was activated after gamma-irradiation. Conversely, PI3K activation in G2-arrested cells promoted endoreduplication and death of the entire population. These observations show that cytokine-induced PI3K signaling pathways promote Cdk activation and override permanent cell cycle arrest checkpoints in hematopoietic cells. While this activity can rescue irradiated cells from permanent G1 phase arrest, it results in aberrant cell cycling and death when activated in hematopoietic cells arrested at the G2 phase DNA damage checkpoint.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.