697
Views
36
CrossRef citations to date
0
Altmetric
Report

Single cell nanoparticle tracking to model cell cycle dynamics and compartmental inheritance

Pages 121-130 | Published online: 01 Jan 2010
 

Abstract

Single cell encoding with quantum dots as live cell optical tracers for deriving proliferation parameters has been developed using modelling to investigate cell cycle and proliferative outputs of human osteosarcoma cells undergoing mitotic bypass and endocycle routing. A computer-based simulation of the evolving cell population provides information on the dilution and segregation of nanoparticle dose cell by cell division and allows quantitative assessment of patterns of division, at both single cell and including whole population level cell cycle routing, with no a-priori knowledge of the population proliferation potential. The output therefore provides a unique mitotic distribution function that represents a convolution of cell cycle kinetics (cell division) and the partitioning coefficient for the labelled cell compartment (daughter-daughter inheritance or lineage asymmetry). The current study has shown that the cellular quantum dot fluorescence reduced over time as the particles were diluted by the process of cell division and had the properties of a non-random highly asymmetric event. Asymmetric nanoparticle segregation in the endosomal compartment has major implications on cell-fate determining signaling pathways and could lead to an understanding of the origins of unique proliferation and drug-resistance characteristics within a tumour cell lineage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.